Robust vector quantization by competitive learning

نویسندگان

  • Joachim M. Buhmann
  • Thomas Hofmann
چکیده

Competitive neural networks can be used to e ciently quantize image and video data. We discuss a novel class of vector quantizers which perform noise robust data compression. The vector quantizers are trained to simultaneously compensate channel noise and code vector elimination noise. The training algorithm to estimate code vectors is derived by the maximum entropy principle in the spirit of deterministic annealing. We demonstrate the performance of noise robust codebooks with compression results for a teleconferencing system on the basis of a wavelet image representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competitive learning algorithms for robust vector quantization

|The e cient representation and encoding of signals with limited resources, e.g., nite storage capacity and restricted transmission bandwidth, is a fundamental problem in technical as well as biological information processing systems. Typically, under realistic circumstances, the encoding and communication of messages has to deal with different sources of noise and disturbances. In this paper, ...

متن کامل

Average Competitive Learning Vector Quantization

We propose a new algorithm for vector quantization:Average Competitive Learning Vector Quantization(ACLVQ). It is a rather simple modification of the classical Competitive Learning Vector Quantization(CLVQ). This new formulation gives us similar results for the quantization error to those obtained by the CLVQ and reduce considerably the computation time to achieve the optimal quantizer. We esta...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

Accelerating Competitive Learning Graph Quantization

Vector quantization(VQ) is a lossy data compression technique from signal processing for which simple competitive learning is one standard method to quantize patterns from the input space. Extending competitive learning VQ to the domain of graphs results in competitive learning for quantizing input graphs. In this contribution, we propose an accelerated version of competitive learning graph qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997